已阅: 227
Github:https://github.com/asd123pwj/motion-detect
介绍
原理
- 读取视频帧,并转为灰度图。
- 高斯滤波,取出噪声。
- Canny边缘提取。
- GMM模型分离运动前景。
- 与前一帧作差。
- 使用绘制区域、腐蚀、膨胀、开运算、闭运算等形态学处理方式消除噪声,连接相邻区域。
- 绘制区域。
效果
- 优点
- 光照影响极小。
- 能美观标注运动整体,但标注的运动区域容易抖动。
- 对小运动敏感。
- 缺点
- 对大面积白色运动物体敏感度差。
- 对边缘模糊的运动物体难以标注。
- 光照会带来少量噪声。
改进方向
- 改进边缘提取算法,或为其增加能提取出模糊物体边缘的功能。
- 与前文结合,使用帧间比较消除光照带来的少量噪声。
代码
import cv2 as cv
import numpy as np
def GMM_process(frame, gray_frame, mog, es):
gray_frame = mog.apply(gray_frame)
# 膨胀、腐蚀处理,将相近的运动区块连接
# gray_frame = cv.erode(gray_frame, es, iterations=1)
# gray_frame = cv.dilate(gray_frame, es, iterations=1)
for i in range(20):
gray_frame = cv.dilate(gray_frame, es, iterations=2)
gray_frame = cv.erode(gray_frame, es, iterations=1)
# 运动轮廓提取
contours, hierarchy = cv.findContours(gray_frame, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# 轮廓画于图片
for c in contours:
# 去除小面积变化噪声
if cv.contourArea(c) < 300:
continue
(x, y, w, h) = cv.boundingRect(c)
cv.rectangle(gray_frame, (x, y), (x + w, y + h), (255, 255, 255), -1)
gray_frame = cv.dilate(gray_frame, es, iterations=10)
# 运动轮廓提取
contours, hierarchy = cv.findContours(gray_frame, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# 轮廓画于图片
for c in contours:
# 去除小面积变化噪声
if cv.contourArea(c) < 200:
continue
(x, y, w, h) = cv.boundingRect(c)
cv.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
return frame
def get_edge(gray_frame, es, GB_thres, Canny_thres_1, Canny_thres_2):
gray_frame = cv.GaussianBlur(gray_frame, (GB_thres, GB_thres), 0)
# gray_frame = cv.bilateralFilter(gray_frame, 10, 175, 5)
# 差别图像二值化
# gray_frame = cv.threshold(gray_frame, 150, 255, cv.THRESH_BINARY + cv.THRESH_OTSU)[1]
edge_frame = cv.Canny(gray_frame, Canny_thres_1, Canny_thres_2, True)
# gray_frame = cv.GaussianBlur(gray_frame, (GB_thres, GB_thres), 0)
return edge_frame
def get_inter_diff(frame, present_frame, last_frame, es):
inter_diff = cv.absdiff(last_frame, present_frame)
# 膨胀、腐蚀处理,将相近的运动区块连接
inter_diff = cv.erode(inter_diff, es, iterations=1)
inter_diff = cv.dilate(inter_diff, es, iterations=1)
for i in range(5):
inter_diff = cv.dilate(inter_diff, es, iterations=2)
inter_diff = cv.erode(inter_diff, es, iterations=1)
# 运动轮廓提取
contours, hierarchy = cv.findContours(inter_diff, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# 轮廓画于图片
for c in contours:
# 去除小面积变化噪声
if cv.contourArea(c) < 300:
continue
(x, y, w, h) = cv.boundingRect(c)
cv.rectangle(inter_diff, (x, y), (x + w, y + h), (255, 255, 255), -1)
inter_diff = cv.dilate(inter_diff, es, iterations=5)
# 运动轮廓提取
contours, hierarchy = cv.findContours(inter_diff, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# 轮廓画于图片
for c in contours:
# 去除小面积变化噪声
if cv.contourArea(c) < 400:
continue
(x, y, w, h) = cv.boundingRect(c)
cv.rectangle(inter_diff, (x, y), (x + w, y + h), (255, 255, 255), -1)
inter_diff = cv.dilate(inter_diff, es, iterations=10)
inter_diff = cv.erode(inter_diff, es, iterations=4)
# 运动轮廓提取
contours, hierarchy = cv.findContours(inter_diff, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# 轮廓画于图片
for c in contours:
# 去除小面积变化噪声
if cv.contourArea(c) < 800:
continue
(x, y, w, h) = cv.boundingRect(c)
cv.rectangle(inter_diff, (x, y), (x + w, y + h), (255, 255, 255), -1)
frame_origin = cv.absdiff(last_frame, last_frame)
# 运动轮廓提取
contours, hierarchy = cv.findContours(inter_diff, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# 轮廓画于图片
for c in contours:
# 去除小面积变化噪声
if cv.contourArea(c) < 800:
continue
(x, y, w, h) = cv.boundingRect(c)
cv.rectangle(frame_origin, (x, y), (x + w, y + h), (255, 255, 255), -1)
es2 = cv.getStructuringElement(cv.MORPH_CROSS, (3, 8))
frame_origin = cv.dilate(frame_origin, es2, iterations=12)
es2 = cv.getStructuringElement(cv.MORPH_CROSS, (8, 3))
frame_origin = cv.dilate(frame_origin, es2, iterations=7)
es2 = cv.getStructuringElement(cv.MORPH_CROSS, (5, 7))
frame_origin = cv.erode(frame_origin, es2, iterations=18)
# frame_origin = cv.erode(frame_origin, es, iterations=4)
# inter_diff = cv.absdiff(frame_origin, frame)
# 运动轮廓提取
contours, hierarchy = cv.findContours(frame_origin, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# 轮廓画于图片
for c in contours:
# 去除小面积变化噪声
if cv.contourArea(c) < 200:
continue
(x, y, w, h) = cv.boundingRect(c)
cv.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
return frame
def main():
# 视频读取
cap = cv.VideoCapture('testVideo.mp4')
# 视频fps读取
fps = cap.get(cv.CAP_PROP_FPS)
print(fps)
# 视频大小读取
size = (int(cap.get(cv.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)))
# 视频保存编码
fourcc_mp4 = cv.VideoWriter_fourcc(*'mp4v')
fourcc_avi = cv.VideoWriter_fourcc(*'XVID')
# 保存视频
out_detect = cv.VideoWriter('output_detect.mp4', fourcc_mp4, fps, size, True)
# 形态学模板创建
# es = cv.getStructuringElement(cv.MORPH_ELLIPSE, (12, 12))
es = cv.getStructuringElement(cv.MORPH_CROSS, (3, 3))
print(es)
GB_thres = 7
medianBlur_Threshold = 3
Canny_thres_1 = 20
Canny_thres_2 = 60
inter_diff = None
mog = cv.createBackgroundSubtractorMOG2()
last_frame = None
times = 1
show = 0
while cap.isOpened():
# 处理第times帧
print(times)
times += 1
# 读入视频帧
ret, frame = cap.read()
# 视频结束,跳出循环
if frame is None:
break
# 转灰度图
gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
# GMM识别
# GMM_frame = GMM_process(frame, gray_frame.copy(), mog, es)
# GMM识别区内不同
# intra_diff = cv.absdiff(GMM_frame, gray_frame)
# intra_edge = get_edge(intra_diff, es, GB_thres, Canny_thres_1, Canny_thres_2)
if last_frame is not None:
present_edge = get_edge(gray_frame, es, GB_thres, Canny_thres_1, Canny_thres_2)
last_edge = get_edge(last_frame, es, GB_thres, Canny_thres_1, Canny_thres_2)
present_GMM = mog.apply(present_edge)
last_GMM = mog.apply(last_edge)
inter_diff = get_inter_diff(frame.copy(), present_GMM, last_GMM, es)
# inter_diff = cv.absdiff(frame, inter_diff)
# inter_gray_frame = cv.cvtColor(inter_diff, cv.COLOR_BGR2GRAY)
# GMM_frame = GMM_process(frame, inter_gray_frame.copy(), mog, es)
# GMM_frame = GMM_process(frame, inter_diff.copy(), mog, es)
last_frame = gray_frame
# 图像实时显示
if show:
# cv.namedWindow(frame, cv.WINDOW_NORMAL)
# cv.imshow(frame, frame)
# cv.namedWindow(gray_frame, cv.WINDOW_NORMAL)
# cv.imshow(gray_frame, gray_frame)
# cv.namedWindow(edge, cv.WINDOW_NORMAL)
# cv.imshow(edge, edge)
if inter_diff is not None:
cv.namedWindow(diff, cv.WINDOW_NORMAL)
cv.imshow(diff, inter_diff)
# 按键退出
if cv.waitKey(1) == ord('q'):
break
# 处理结果写入
out_detect.write(inter_diff)
# 资源释放
cap.release()
cv.destroyAllWindows()
out_detect.release()
if __name__ == '__main__':
main()
Sirit
请问,有啥拼图算法吗?比如解决七巧板的算法?
MWHLS@Sirit
这个我没了解过